Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Neuro Oncol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695575

RESUMO

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

2.
Clin Cancer Res ; 29(22): 4685-4697, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37682326

RESUMO

PURPOSE: Targeting immunosuppressive and pro-tumorigenic glioblastoma (GBM)-associated macrophages and microglial cells (GAM) has great potential to improve patient outcomes. Colony-stimulating factor-1 receptor (CSF1R) has emerged as a promising target for reprograming anti-inflammatory M2-like GAMs. However, treatment data on patient-derived, tumor-educated GAMs and their influence on the adaptive immunity are lacking. EXPERIMENTAL DESIGN: CD11b+-GAMs freshly isolated from patient tumors were treated with CSF1R-targeting drugs PLX3397, BLZ945, and GW2580. Phenotypical changes upon treatment were assessed using RNA sequencing, flow cytometry, and cytokine quantification. Functional analyses included inducible nitric oxide synthase activity, phagocytosis, transmigration, and autologous tumor cell killing assays. Antitumor effects and changes in GAM activation were confirmed in a complex patient-derived 3D tumor organoid model serving as a tumor avatar. RESULTS: The most effective reprogramming of GAMs was observed upon GW2580 treatment, which led to the downregulation of M2-related markers, IL6, IL10, ERK1/2, and MAPK signaling pathways, while M1-like markers, gene set enrichment indicating activated MHC-II presentation, phagocytosis, and T-cell killing were substantially increased. Moreover, treatment of patient-derived GBM organoids with GW2580 confirmed successful reprogramming, resulting in impaired tumor cell proliferation. In line with its failure in clinical trials, PLX3397 was ineffective in our analysis. CONCLUSIONS: This comparative analysis of CSF1R-targeting drugs on patient-derived GAMs and human GBM avatars identified GW2580 as the most powerful inhibitor with the ability to polarize immunosuppressive GAMs to a proinflammatory phenotype, supporting antitumor T-cell responses while also exerting a direct antitumor effect. These data indicate that GW2580 could be an important pillar in future therapies for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Microglia/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Macrófagos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
3.
Adv Exp Med Biol ; 1416: 199-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432629

RESUMO

The management of clinically aggressive meningiomas remains challenging due to limited treatment options aside from surgical removal and radiotherapy. High recurrence rates and lack of effective systemic therapies contribute to the unfavorable prognosis of these patients. Accurate in vitro and in vivo models are critical for understanding meningioma pathogenesis and to identify and test novel therapeutics. In this chapter, we review cell models, genetically engineered mouse models, and xenograft mouse models, with special emphasis on the field of application. Finally, promising preclinical 3D models such as organotypic tumor slices and patient-derived tumor organoids are discussed.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Animais , Camundongos , Meningioma/genética , Meningioma/terapia , Agressão , Modelos Animais de Doenças , Organoides , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/terapia
4.
Cells ; 12(8)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190109

RESUMO

Patients diagnosed with isocitrate dehydrogenase mutant (IDHmut) gliomas suffer frequently from seizures. Although the clinical course is less aggressive than that of its IDH wildtype counterpart, recent discoveries have shown that epileptic activity can promote tumor proliferation. However, it is not known if antiepileptic drugs confer additional value by inhibiting tumor growth. In this study, the antineoplastic properties of 20 FDA-approved antiepileptic drugs (AEDs) were tested in six patient-derived IDHmut glioma stem-like cells (GSCs). Cell proliferation was assessed using the CellTiterGlo-3D assay. Two of the screened drugs (oxcarbazepine and perampanel) demonstrated an antiproliferative effect. A subsequent eight-point dose-response curve proved the dose-dependent growth inhibition for both drugs, but only oxcarbazepine reached an IC50 value below 100 µM in 5/6 GSCs (mean 44.7 µM; range 17.4-98.0 µM), approximating the possible cmax for oxcarbazepine in patient serums. Furthermore, the treated GSC spheroids were 82% smaller (mean volume 1.6 nL vs. 8.7 nL; p = 0.01 (live/deadTM fluorescence staining)), and the apoptotic events increased by more than 50% (caspase-3/7 activity; p = 0.006). Taken together, this drug screen of a large series of antiepileptic drugs identified oxcarbazepine as a potent proapoptotic drug in IDHmut GSCs, which combines antiepileptic and antineoplastic properties to treat this seizure-prone patient population.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Anticonvulsivantes/farmacologia , Oxcarbazepina/farmacologia , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia
5.
Clin Cancer Res ; 29(1): 233-243, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36282277

RESUMO

PURPOSE: To date, there are no systemic treatment options for patients with recurrent or refractory meningioma. EXPERIMENTAL DESIGN: To identify effective drugs, we performed a large-scale drug screening using FDA-approved drugs on several meningioma cell lines. The impact of the top four compounds was assessed on cell viability, proliferation, colony formation, migration, and apoptosis. In addition, the antineoplastic effects of the selected drugs were validated in a heterotopic xenograft mouse model. RESULTS: Analyses of the viability of meningioma cells treated with 119 antineoplastic FDA-approved drugs resulted in categorization into sensitive and resistant drug-response groups based on the mean IC50 values and peak serum concentrations (Cmax) in patients. Eighty drugs, including 15 alkylating agents, 14 antimetabolites, and 13 tyrosine kinase inhibitors, were classified as resistant (IC50 > Cmax). The sensitive drug-response group (n = 29, IC50 < Cmax) included RNA/protein synthesis inhibitors, proteasome inhibitors, topoisomerase, tyrosine-kinase, and partial histone deacetylase and microtubule inhibitors. The IC50 value of the four most effective compounds (carfilzomib, omacetaxine, ixabepilone, and romidepsin) ranged from 0.12 to 9.5 nmol/L. Most of them caused cell-cycle arrest in the G2-M-phase and induced apoptosis. Furthermore, all drugs except romidepsin significantly inhibited tumor growth in vivo. The strongest antineoplastic effect was observed for ixabepilone, which reduced tumor volume by 86%. CONCLUSIONS: In summary, a large-scale drug screening provides a comprehensive insight into the anti-meningioma activities of FDA-approved drugs, and identified carfilzomib, omacetaxine, ixabepilone, and romidepsin as novel potent antineoplastic agents for the treatment of aggressive meningiomas. The most pronounced effects were observed with ixabepilone mandating for further clinical investigation.


Assuntos
Antineoplásicos , Neoplasias Meníngeas , Meningioma , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Mepesuccinato de Omacetaxina/farmacologia , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Aprovação de Drogas
7.
Cancers (Basel) ; 13(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885009

RESUMO

To date, there is no standard-of-care systemic therapy for the treatment of aggressive meningiomas. Receptor tyrosine kinases (RTK) are frequently expressed in aggressive meningiomas and are associated with poor survival. Ponatinib is a FDA- and EMA-approved RTK inhibitor and its efficacy in meningioma has not been studied so far. Therefore, we investigated ponatinib as a potential drug candidate against meningioma. Cell viability and cell proliferation of ponatinib-treated meningioma cells were assessed using crystal violet assay, manual counting and BrdU assay. Treated meningioma cell lines were subjected to flow cytometry to evaluate the effects on cell cycle and apoptosis. Meningioma-bearing mice were treated with ponatinib to examine antitumor effects in vivo. qPCR was performed to assess the mRNA levels of tyrosine kinase receptors after ponatinib treatment. Full-length cDNA sequencing was carried out to assess differential gene expression. IC50 values of ponatinib were between 171.2 and 341.9 nM in three meningioma cell lines. Ponatinib induced G0/G1 cell cycle arrest and subsequently led to an accumulation of cells in the subG1-phase. A significant induction of apoptosis was observed in vitro. In vivo, ponatinib inhibited meningioma growth by 72.6%. Mechanistically, this was associated with downregulation of PDGFRA/B and FLT3 mRNA levels, and mitochondrial dysfunction. Taken together, ponatinib is a promising candidate for targeted therapy in the treatment of aggressive meningioma.

8.
J Clin Oncol ; 39(34): 3839-3852, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618539

RESUMO

PURPOSE: Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS: DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS: Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION: Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction.


Assuntos
Meningioma/classificação , Humanos , Estudos Prospectivos , Estudos Retrospectivos
9.
Cancer Lett ; 506: 1-10, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33652084

RESUMO

Treatment of aggressive meningiomas remains challenging due to a high rate of recurrence in higher-grade meningiomas, frequent subtotal resections, and the lack of effective systemic treatments. Substantial overexpression associated with a poor prognosis has been demonstrated for kinesin family member 11 (KIF11) in high-grade meningiomas. Due to anti-tumor activity for KIF11 inhibitors (KIF11i) filanesib and ispinesib in other cancer types, we sought to investigate their mode of action and efficacy for the treatment of aggressive meningiomas. Dose curve analysis of both KIF11i revealed IC50 values of less than 1 nM in anaplastic and benign meningioma cell lines. Both compounds induced G2/M arrest and subsequent subG1 increase in all cell lines. Profound induction of apoptosis was detected in the anaplastic cell lines determined by annexin V staining. KIF11i significantly inhibited meningioma growth in xenotransplanted mice by up to 83%. Furthermore, both drugs induced minor hematological side effects, which were less pronounced for filanesib. We identified substantial in vitro and in vivo anti-tumor effects of the KIF11 inhibitors filanesib and ispinesib, with filanesib demonstrating better tolerability, suggesting future use of filanesib for the treatment of aggressive meningioma.


Assuntos
Benzamidas/farmacologia , Cinesinas/antagonistas & inibidores , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Quinazolinas/farmacologia , Tiadiazóis/farmacologia , Animais , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Cinesinas/fisiologia , Neoplasias Meníngeas/patologia , Meningioma/patologia , Camundongos , Quinazolinas/uso terapêutico , Tiadiazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cells ; 9(6)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503220

RESUMO

The discovery of the isocitrate dehydrogenase (IDH) mutation in glioma led to a paradigm shift on how we see glioma biology. Difficulties in cultivating IDH mutant glioma stem cells (IDHmut GSCs) resulted in a paucity of preclinical models in IDHmut glioma, limiting the discovery of new effective chemotherapeutic agents. To fill this gap, we used six recently developed patient-derived IDHmut GSC lines and performed a large-scale drug screening with 147 Food and Drug Administration (FDA)-approved anticancer drugs. GSCs were subjected to the test compounds for 72 h in concentrations ranging from 0.0001 to 1 µM. Cell viability was assessed by CellTiterGlo and the induction of apoptosis by flow cytometry with Annexin V/propidium iodide staining. The initial screen was performed with two IDHmut GSC lines and identified seven drugs (bortezomib, carfilzomib, daunorubicin, doxorubicin, epirubicin, omacetaxine, plicamycin) with a substantial antiproliferative activity, as reflected by half maximal inhibitory concentrations (IC50) below 1 µM and maximum inhibitory effects (Emax) below 25%. These findings were validated in an additional four IDHmut GSC lines. The candidate drugs, of which plicamycin and omacetaxine are known to cross the blood brain barrier, were used for subsequent cell death analyses. A significant induction of apoptosis was observed at IC50 values of the respective drugs. In summary, we were able to identify seven FDA-approved drugs that should be further taken into clinical investigations for the treatment of IDHmut gliomas.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Aprovação de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/tratamento farmacológico , Isocitrato Desidrogenase/genética , Mutação/genética , Células-Tronco Neoplásicas/patologia , Anexina A5/metabolismo , Antineoplásicos/farmacologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Concentração Inibidora 50 , Propídio/metabolismo , Reprodutibilidade dos Testes , Estados Unidos , United States Food and Drug Administration
11.
Acta Neuropathol Commun ; 7(1): 140, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470906

RESUMO

Intraventricular meningiomas (IVMs) account for less than 5% of all intracranial meningiomas; hence their molecular phenotype remains unknown. In this study, we were interested whether genetic alterations in IVMs differ from meningiomas in other locations and analyzed our institutional series with respect to clinical and molecular characteristics. A total of 25 patients with surgical removal of an IVM at our department between 1986 and 2018 were identified from our institutional database. Median progression-free survival (PFS) was 79 months (range of 2-319 months) and PFS at 5 years was 86%. Corresponding tumor tissue was available for 18 patients including one matching recurrence and was subjected to targeted panel sequencing of 130 selected genes frequently mutated in brain cancers by applying a custom hybrid capture approach on a NextSeq500 instrument. Loss of chromosome 22q and 1p occurred frequently in 89 and 44% of cases. Deleterious NF2 mutations were found in 44% of IVMs (n = 8/18). In non-NF2-mutated IVMs, previously reported genetic alterations including TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT were lacking, suggesting alternative genes in the pathogenesis of non-NF2 IVMs. In silico analysis revealed possible damaging mutations of APC, GABRA6, GSE1, KDR, and two SMO missense mutations differing from previously reported ones. Interestingly, all WHO°II IVMs (n = 3) harbored SMARCB1 and SMARCA4 mutations, indicating a role of the SWI/SNF chromatin remodeling complex in aggressive IVMs.


Assuntos
Neoplasias do Ventrículo Cerebral/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Mutação/genética , Neurofibromina 2/genética , Adolescente , Adulto , Idoso , Neoplasias do Ventrículo Cerebral/diagnóstico por imagem , Classe I de Fosfatidilinositol 3-Quinases/genética , Estudos de Coortes , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/genética , Estudos Retrospectivos , Receptor Smoothened/genética , Telomerase/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Adulto Jovem
12.
Clin Cancer Res ; 25(17): 5260-5270, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227506

RESUMO

PURPOSE: Clinically aggressive meningiomas (MGMs) are rare but treatment-resistant tumors in need for more effective therapies. Because tumor-infiltrating T lymphocytes (TILs) are essential for successful immunotherapy, we assessed TIL numbers and their activation status in primary (p-) and recurrent (r-) meningiomas and their impact on survival. EXPERIMENTAL DESIGN: Presence of TILs was analyzed in 202 clinically well-annotated cases (n = 123 pMGMs and n = 79 rMGMs) focusing on higher-grade meningiomas [n = 97 World Health Organization (WHO) °II, n = 62 WHO°III]. TILs were quantified by a semiautomated analysis on whole-tissue sections stained by multicolor immunofluorescence for CD3, CD8, FOXP3, and programmed cell death protein 1 (PD-1). RESULTS: Median T-cell infiltration accounted for 0.59% TILs per total cell count. Although there were no significant WHO°-dependent changes regarding helper (CD3+CD8-FOXP3-) and cytotoxic (CD3+CD8+FOXP3-) TILs in pMGMs, higher number of cytotoxic TILs were associated with an improved progression-free survival (PFS) independent of prognostic confounders. rMGMs were characterized by lower numbers of TILs in general, helper, and cytotoxic TILs. The additional analysis of their activation status revealed that a proportion of PD-1+CD8+ TILs within the TIL population was significantly decreased with higher WHO grade and in rMGMs. Furthermore, lower proportions of PD-1+CD8+ TILs were associated with inferior PFS in multivariate analyses, arguing for PD-1 as activation rather than exhaustion marker. CONCLUSIONS: We identified higher numbers of CD3+CD8+FOXP3- TILs and proportions of PD-1-expressing CD3+CD8+FOXP3- TILs as novel biomarkers for better survival. These findings might facilitate the selection of patients who may benefit from immunotherapy and argue in favor of an intervention in primary rather than recurrent tumors.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Meníngeas/imunologia , Meningioma/imunologia , Recidiva Local de Neoplasia/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/imunologia , Feminino , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/patologia , Masculino , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/terapia , Meningioma/patologia , Meningioma/terapia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Prognóstico , Taxa de Sobrevida , Linfócitos T Citotóxicos/patologia , Adulto Jovem
13.
Cancers (Basel) ; 11(4)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991738

RESUMO

Kinesins play an important role in many physiological functions including intracellular vesicle transport and mitosis. The emerging role of kinesins in different cancers led us to investigate the expression and functional role of kinesins in meningioma. Therefore, we re-analyzed our previous microarray dataset of benign, atypical, and anaplastic meningiomas (n = 62) and got evidence for differential expression of five kinesins (KIFC1, KIF4A, KIF11, KIF14 and KIF20A). Further validation in an extended study sample (n = 208) revealed a significant upregulation of these genes in WHO°I to °III meningiomas (WHO°I n = 61, WHO°II n = 88, and WHO°III n = 59), which was most pronounced in clinically more aggressive tumors of the same WHO grade. Immunohistochemical staining confirmed a WHO grade-associated upregulated protein expression in meningioma tissues. Furthermore, high mRNA expression levels of KIFC1, KIF11, KIF14 and KIF20A were associated with shorter progression-free survival. On a functional level, knockdown of kinesins in Ben-Men-1 cells and in the newly established anaplastic meningioma cell line NCH93 resulted in a significantly inhibited tumor cell proliferation upon siRNA-mediated downregulation of KIF11 in both cell lines by up to 95% and 71%, respectively. Taken together, in this study we were able to identify the prognostic and functional role of several kinesin family members of which KIF11 exhibits the most promising properties as a novel prognostic marker and therapeutic target, which may offer new treatment options for aggressive meningiomas.

14.
Pediatr Blood Cancer ; 64(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28598542

RESUMO

BACKGROUND: Overexpression of minichromosome maintenance (MCM) proteins 2, 3, and 7 is associated with migration and invasion in medulloblastoma (MB). However, expression profiling of all prereplication complex (pre-RC) has not been addressed in MBs. PROCEDURE: We performed mRNA expression profiling of a large set of pre-RC elements in cell lines and tumor tissues of MB. RNAi technology was employed for functional studies in MB cell lines. RESULTS: Our data showed that most of the pre-RC components are significantly overexpressed in MB. Among all pre-RC mRNAs, MCM10 showed the highest level of expression (∼500- to 1,000-fold) in MB cell lines and tissues compared to the levels detected in cerebellum. In addition, RNAi silencing of MCM10 caused reduced cell proliferation and cell viability in MB cells. CONCLUSIONS: Taken together, our study reveals that the pre-RC is dysregulated in MB. In addition, MCM10, a member of this complex, is significantly overexpressed in MB and is required for tumor cell proliferation.


Assuntos
Neoplasias Cerebelares/química , Meduloblastoma/química , Proteínas de Manutenção de Minicromossomo/fisiologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/patologia , Humanos , Imuno-Histoquímica , Meduloblastoma/patologia , Proteínas de Manutenção de Minicromossomo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA